modes and tails.
نویسنده
چکیده
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordström-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically. Also we considered a possibility of construction of the acoustic analogue of the Schwarzschild black hole.
منابع مشابه
Interface localized modes and hybrid lattice solitons in waveguide arrays
Nonlinear Physics Center, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia We discuss the formation of guided modes localized at the interface separating two different periodic photonic lattices. Employing the effective discrete model, we analyze linear and nonlinear interface modes and also predict the existence of stable interf...
متن کاملLinear modes of gene expression determined by independent component analysis
MOTIVATION The expression of genes is controlled by specific combinations of cellular variables. We applied Independent Component Analysis (ICA) to gene expression data, deriving a linear model based on hidden variables, which we term 'expression modes'. The expression of each gene is a linear function of the expression modes, where, according to the ICA model, the linear influences of differen...
متن کاملIntermediate behavior of Kerr tails
The numerical investigation of wave propagation in the asymptotic domain of Kerr spacetime has only recently been possible thanks to the construction of suitable hyperboloidal coordinates. The asymptotics revealed an apparent puzzle in the decay rates of scalar fields: the late-time rates seemed to depend on whether finite distance observers are in the strong field domain or far away from the r...
متن کاملNonlinear surface modes and Tamm states in periodic photonic structures
We study the formation of nonlinear localized modes and discrete surface solitons near the edges or interfaces of weakly coupled nonlinear optical waveguides, one-dimensional photonic crystals. We draw an analogy between the staggered nonlinear surface optical modes and the surface Tamm states known in the electronic theory. We discuss the crossover between discrete solitons inside the array an...
متن کاملMode-Coupling in Realistic Rotating Gravitational Collapse
We analyze the mode-coupling phenomena in realistic rotating gravitational collapse. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star’s) rotation. It is shown that different modes become coupled during the rotating collapse. As a consequence, the asymptotic late-time tails are dominated by modes which, in general, have an angular distribut...
متن کاملLogarithmic perturbation theory for quasinormal modes
Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Pöschl-Teller potential is briefly discussed. A numerical method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009